Le Duc Hau

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Re-Identification of Patient Subgroups in Uveal Melanoma
    (2021-10-20) Nguyen Thi Hai Yen; Nguyen Tin; Nguyen Quang Huy; Le Duc Hau
    Uveal melanoma (UM) is a comparatively rare cancer but requires serious consideration since patients with developing metastatic UM survive only for about 6–12 months. Fortunately, increasingly large multi-omics databases allow us to further understand cancer initiation and development. Moreover, previous studies have observed that associations between copy number aberrations (CNA) or methylation (MET) versus messenger RNA (mRNA) expression have affected these processes. From that, we decide to explore the effect of these associations on a case study of UM. Also, the current subtypes of UM display its weak association with biological phenotypes and its lack of therapy suggestions. Therefore, the re-identification of molecular subtypes is a pressing need. In this study, we recruit three omics profiles, including CNA, MET, and mRNA, in a UM cohort from The Cancer Genome Atlas (TCGA). Firstly, we identify two sets of genes, CNAexp and METexp, whose CNA and MET significantly correlated with their corresponding mRNA, respectively. Then, single and integrative analyses of the three data types are performed using the PINSPlus tool. As a result, we discover two novel integrative subgroups, IntSub1 and IntSub2, which could be a useful alternative classification for UM patients in the future. To further explore molecular events behind each subgroup, we identify their subgroup-specific genes computationally. Accordingly, the highest expressed genes among IntSub1-specific genes are mostly enriched with immune-related processes. On the other hand, IntSub2-specific genes are highly associated with cellular cation homeostasis, which responds effectively to chemotherapy using ion channel inhibitor drugs. In addition, we detect that the two integrative subgroups show different age-related risks and survival rates. These discoveries can influence the frequency of metastatic surveillance and support medical practitioners to choose an appropriate treatment regime.
  • Item
    Graph convolutional networks for drug response prediction
    (2021) Tuan Nguyen; Giang Nguyen; Thin Nguyen; Hau Le
    Background: Drug response prediction is an important problem in computational personalized medicine. Many machine-learning-based methods, especially deep learning-based ones, have been proposed for this task. However, these methods often represent the drugs as strings, which are not a natural way to depict molecules. Also, interpretation (e.g., what are the mutation or copy number aberration contributing to the drug response) has not been considered thoroughly. Methods: In this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP, drugs were represented in molecular graphs directly capturing the bonds among atoms, meanwhile, cell lines were depicted as binary vectors of genomic aberrations. Representative features of drugs and cell lines were learned by convolution layers, then combined to represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair was predicted by a fully-connected neural network. Four variants of graph convolutional networks were used for learning the features of drugs. Results: We found that GraphDRP outperforms tCNNS in all performance measures for all experiments. Also, through saliency maps of the resulting GraphDRP models, we discovered the contribution of the genomic aberrations to the responses. Conclusion: Representing drugs as graphs can improve the performance of drug response prediction.
copyright 2023